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COMMENT 

Studies of the spectral dimension for branched Koch curves 

Ruibao Taot  
International Centre for Theoretical Physics, POB 586, Miramare, 34100 Trieste, Italy 

Received 1 December 1986, in final form 25 June 1987 

Abstract. The scaling behaviour of Koch curves with a rather general branched structure 
is studied by means of the exact renormalisation method and the general formula of spectral 
dimension is obtained. I t  is proved that the spectral dimension is only dependent on the 
topology of the curve. The Einstein relation between the random walk dimension, fractal 
dimension and size-scaling exponent of DC conductivity is also checked. 

Recently, there has been increasing interest in systems with a dilatation symmetry or 
fractal (Mandelbrot 1977,1982). In general, there are two kinds of fractal: deterministic 
fractals (self-similar) such as the Koch curve (Gefen et a1 1983), the Sierpinski gasket 
(Gefen er a1 1981, 1984b, Rammal and Toulouse 1982, 1983, Hilfer and Blumen 1984) 
and the Sierpinski carpet (Gefen et a1 1984a), and random fractals (statistically 
self-similar) such as a random walk in free space and the infinite cluster at percolation 
threshold (Gefen et a1 1981, Mandelbrot 1982). There are also many disordered systems 
with dilatation invariance such as linear or branched polymers (Havlin and Ben- 
Avraham 1982), diffusion-limited aggregates (Witten and Sander 1981, 1983), porous 
materials (Even et a1 1984) and others. 

Deterministic fractals have become an important and attractive area of study due 
to the great current theoretical interest in the properties of systems with self-similar 
structure. Deterministic fractals could be considered as simple models of realistic 
systems with statistically self-similar structures. For example, the non-branched or 
branched Koch curves can be related, as a model, to linear or branched polymers. 

Stinchcombe (1985) studied the diffusion in a branched Koch curve and reported 
on the properties of its spectral dimension. Maritan and Stella (1986) studied the 
spectral dimension for a non-branched Koch curve with long-range interaction. All of 
them have shown that the Einstein relation 

&, = d,+ i (1) 
between the random walk dimension &, the fractal dimension df and the size-scaling 
exponent i of the DC conductivity is also valid. The random walk dimension (i, is 
related to d ,  and the spectral dimension d, as 

c?,+ = 2d,/ d, ( 2 )  
where d, is related to the acoustic property. Goldhirsch and Gefen (198611 developed 
an analytic method for calculating properties of random walks on networks with 
branches and discussed the comparison with the Kirchhoff rules in the calculation of 
impedances. 
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It is also believed that the spectral dimension is related to the topology of a system 
and that the same topological systems may have identical spectral dimensions. For 
example, spectral dimensions are all equal to one for any non-branching Koch curves. 
Here we will give a simple proof for any branching Koch curves. 

In this comment, the renormalisation method has been used to determine scaling 
exponents for Koch curves with p-branches ( p  = 3-200) at each branched point which 
has been shown at the first stage in figure 1. The fractal model can be constructed 
recursively as the limit of a hierarchy of systems, each obtained from the previous one 
by replacing each bond by a cluster with many bonds as in figure 1. The fractal 
dimension of the fractal is 

P - 1  

, = I  
(3) 

where the self-similar scaling unit b is [2( n + 1)  + L+ 11 and the meaning of numbers 
mi, n and L are shown on figure 1 .  We study the perpendicular vibrating model where 
the displacement of points is vertical to the bonds. The spectral dimension is defined 
as 

p ( w )  W - 0  - wd\-l  (4) 

where p ( w )  is the density of vibrating states. If frequency w has the scaling behaviour 

w ( b R )  = b - " w ( R )  (5) 
where R is the size of system, then the spectral dimension d, can be calculated from 

d, = d,/ a. (6) 

The exponent a can be calculated exactly by a decimation procedure which has been 
described in detail by Stinchcombe (1985) for some kinds of branched Koch curves. 
In our case (see figure l ) ,  we have two kinds of points: p-branching and non-branching 
(two-branching) points so that two renormalisation equations can be obtained from 

a', = a ' i ( ( Y * ,  ( Y p )  ( 7 )  

L L  t 1 4  

m F - -  

Figure 1. A branched Koch curve with multi-branches at the first stage. 
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where a ,  = 0 2 / w f ,  ( i  = 2, p ) ,  w f  = K, /  MI, and  K ,  and M ,  are the effective renormalised 
elastic constant and mass, respectively, of the i-branching point at the nth stage. a', is 
the renormalised frequency at the ( n  - 1)th stage. The O;, and a ,  approach zero as 
w -0. We d o  the expansion of &,(a, ,  a,,) near zero (a , ,  a,,): 

Gz = M ~ , C Y ~  + M,,aP 
(8) 

a'p = M p 2 a 2 +  Mppap  

where { M y }  are coefficients which have been obtained in complicated analytical form. 
Equations ( 7 )  can be rewritten into the matrix equation as 

&=Mff. (9) 

For a fractal with self-similar structure the stages will be extended to infinity. We have 
to solve the eigenequation of M 

Ma* = A&* (10) 

and determine two eigenvalues of M. The largest one A,,,,.: corresponds to the fixed 
point which we need. We have 

A max = Mz> + Mpp + [ ( Mzz + Mpp 1' - 4( Mzz Mpp - M*pMp2)] '1 * ( 1 1 )  

The scaling exponent a can be calculated as 

a = In AmaX/2 In( b ) .  (12) 

The spectral dimension d ,  equals d f /a .  Substituting (2)  into (12), we obtain 

If we change the scaling unit b and fix n, p and all {m,}, we will have many different 
fractals with the same topology and different fractal dimensions. However, the spectral 
dimension does not change at all because d ,  is independent of b and dependent on 
Amax which is only a function of n, p and {m,}. In general, if we have a Koch curve 
with w kinds of branching points, we can also obtain w renormalised equations of 
{a' , :  i = 1 ,  w}, then expand them near zero { a , }  to obtain a set of linear renormalisation 
equations as (8). The A,,, can be obtained in principle and is not related to the 
self-similar scaling unit b so that Koch curves with the same topology must have the 
same spectral dimension. 

The following cases have been calculated. 
(i) n = 2, m, = 4, {m, = ml-l  + 2 :  i = 2, . . . , p - l }  and p = 3-200. The results show 

that df approaches infinity and d, to the limit of 2 with increasing p .  
(ii) p = 15,  {m, = m: i = 1 , .  . . , p - l} ,  m = 1 , .  . . ,200 and n = 1 , .  . . , 10. Whenp  and  

n are fixed and  m is changed, the spectral dimensions will be changed as well as the 
fractal dimensions. It has been found that the spectral dimension d ,  has a maximum 
value at some m. We also calculated the ratio /3 ( = a f / a , * )  of the eigenvector of 
equation (10) related to A,,, and found that it exactly equals 2/p for each case. 

For the infinite cluster at critical percolation, a random fractal, Alexander and  
Orbach (1982) found a weak dependence of spectral dimensionality d ,  on the Euclidean 
dimensionality d as well as the fractal dimensionality d f ,  and conjectured that d , = :  
for any d. Here we can find that d, has some dependence on d f  and approaches two 
as df-m. One can conjecture that the dependence of d, on d f  may be different for 
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deterministic fractals (such as the Koch curve, the Sierpinski gasket, etc) and infinite 
clusters at percolation threshold. 

The Einstein relation (1 )  can be rewritten as (Rammal and Toulouse 1983) 

2a - d f =  L (14) 

The scaling expont t of DC conductivity can be found as 

We have calculated 2 a - d f  and for any case and our results show that they are 
exactly equal, Therefore, we can obtain an analytical formula for the spectral dimension 

(16) 

where d, and Fare defined by (3) and (15). From (16), (3) and (15), we can find that 
d, and d, may become equal and approach unity only in the limiting case of n +a. 
When p + a  or m , + a ,  dr will become infinitive and d, will approach two. It results 
that the maximum d,  is two for such a kind of Koch curve. 

d, 

d, = 2df / (  F+ d,) 
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